

ECE 385 FINAL PROJECT REPORT

HANDWRITING DETECTOR (FPGA + RASPBERRY PI)

Shubham Gupta (sg49) & Devul Nahar (danahar2)

May 11, 2022

Introduction:

The purpose was to design and build a project which can recognize human

handwriting consisting of digits from 0 to 9 and a few operators like +, -, x, and /. By doing

so, we can solve simple mathematical expressions like “9 + 3”. The FPGA would be

responsible for taking user input and displaying output on the VGA display. Meanwhile, our

Rasberry Pi 4b would be responsible for handwriting interpretation via the TensorFlow

library for Python. The Rasberry Pi would be the slave and FPGA is the master device, we

will use SPI to communicate between the two. The FPGA’s OCM would store CNN model as

well as the array of pixels between 0 and 1. The user will draw on the VGA display via

mouse. The Raspberry Pi and the FPGA talk to each other via GPIO pins and an FSM is

maintained to keep track of states in both machines.

Block Diagram:

Platform Designer:

This is the tool we used to generate our IP modules and link the inputs and outputs

together. We have instantiated the on-chip memory of the FPGA and the NIOS II initially.

This is the heart of our design. Then we have added PIOs which are parallel input outputs for

our peripherals. Now, to store our C code we then add a SDRAM. Since SDRAM is

physically away from the chip to account for the delay of 1ns in the clock cycle we have

added a PLL. C code is written to interact with mouse via MAX2431E chip and we use OCM

as VRAM.

This is the same as lab 6.2, we now use Keycode to send mouse button data.

Design Resources and Statistics:

LUT 3426

DSP 10

Memory (BRAM) 405,504

Flip-Flop 2,585

Frequency 83.25 Mhz

Static Power 96.57 mW

Dynamic Power 67.16 mW

Total Power 190.32 mW

Desciptions of Modules:

Module: VGA_controller.sv

Inputs: Clk, Reset

Outputs: hs, vs, pixel_clk, blank, sync, [9:0] DrawX, [9:0] DrawY

Description: This module handles the generation of the VGA signals. One of its key’s

features are to make a 25 Mhz clock from the 50 Mhz clock. This is done by using a

always_ff block. Then this module keeps track of the horizontal and vertical pixel

coordinates. It also resets them if they reach the end of horizontal and vertical pixel bounds.

Another function is to generate the horizontal and vertical pixel sync pulse. Lastly, we use if

else block to generate an active low blank signal.

 Purpose: It is the key component that generates the VGA signals. It provides us the

DrawX and DrawY cordinates which are extremely important to draw anything on the

screen. This module also generates a 25 MHz pixel clock. It provides info for the

blanking interval as well, so that we do not draw anything.

Module: Color_Mapper.sv

Inputs: [9:0] BallX, [9:0] BallY, [9:0] DrawX, [9:0] DrawY, [9:0] Ball_size

Outputs: [7:0] Red, [7:0] Green, [7:0] Blue

Description: This module generates the appropriate color values (Red, Green, Blue) based on

the DrawX and DrawY along with BallX and BallY. We use if else blocks to check if the ball

is supposed to be drawn on the given DrawX and DrawY coordinates, based on ball size,

BallY, and BallX inputs. If the ball is not supposed to be drawn, then we simply draw the

background.

Purpose: It is primarily used to generate the color (RGB) for the pixel depending on X and Y

location of the pixel.

Module: Cursor.sv

Inputs: Reset, frame_clk, [7:0] keycode

Outputs: [9:0] BallX, [9:0] BallY, [9:0] BallS

Description: This is the module that generates the X and Y coordinates of the cursor. We

used always_ff to calculate new positions of the ball based on the boundary conditons and

update the motion in X and Y direction. Followed by updating the X and Y coordinates based

on motion X and Y, along with step X and Y. It is dependent on the X and Y displacement

given by keycode. We have also taken care of the edge cases where the keycode is

continuously pressed and the ball should not escape the screen.

Purpose: Its primary purpose is to generate the new position (X and Y) for the cursor

based on the keycode (mouse displacement) and boundary conditions.

Module: Canvas.sv

Inputs: [9:0] BallX, BallY, DrawX, DrawY, Ball_size, mouseButton, blank, pixel_clk, clk,

[18:0] addressFromPi, SW

Outputs: [7:0] Red, Green, Blue, dataToPi, restartToPi, charDoneToPi, solveToPi

Description: Module that reads and writes to OCM initialized VRAM based on control

signals from the Raspberry Pi/ switches.

Purpose: Provide the functionality of whiteboard to write on the screen with mouse. Supports

drawing, eraser, and a complete reset.

Module: final_project_soc.v

Inputs: clk_clk, [1:0] key_external_connection_export, reset_reset_n, [15:0]

sdram_wire_dq, spi0_MISO, usb_gpx_export, usb_irq_export, [18:0] addressFromPi,

answerReadyFromPi

Outputs: sdram_clk_clk, [12:0] sdram_wire_addr, [1:0] sdram_wire_ba, sdram_wire_cas_n,

sdram_wire_cke, sdram_wire_cs_n, [1:0] sdram_wire_dqm, sdram_wire_ras_n

sdram_wire_we_n, spi0_MOSI, spi0_SCLK, spi0_SS_n, usb_rst_export, dataToPi,

restartToPi, charDoneToPi, solveToPi

Description: We have instantiated the following IPs in the platform designer which

make up this module. This top-level module is so that we can connect inputs and

outputs of these IPs. The IPs include: NIOS ll/e, OCM, PIOs, JTAG UART, SDRAM,

PPL for SDRAM, SPI, TIMER, and USB INTERRUPTS. NIOS ll/e is our processor.

JTAG UART is for debugging purposes that we use to debug the NIOS ll. SDRAM is

the primary memory where our compiled code is stored as instructions. PLL is to

accommodate the physical time offset due to the path difference between the SDRAM

and the OCM. SPI is the IP we used to communicate between the USB shield and

NIOS ll. USB interrupts are so that we can send interrupt requests whenever mouse sends X

and Y displacement. PIOs are used to display the content to HexDrivers as memory mapped

I/O. Same goes for SWs and LEDS.

Purpose: Our top-level SOC.

SystemVerilog Code Description:

Finalproject.sv

Initializing VGA controller here.

Initializing the Cursor module here.

Initializing the canvas here.

Canvas.sv:

To decide if the cursor should be ON/OFF.

Here we calculate the VRAM address and initialize the switches to control signals.

Implementing the FSM between Raspberry pi and the FGPA based on control signals.

VRAM initialization on the OCM. This is an IP module. It is true dual port RAM with

512000 words and 1-bit as word size for each pixel. 0 if white to be printed, 1 for black.

These are the conditions for when to update the VRAM.

Logic to produce VGA signals based on cursor and VRAM.

Description of Software on Raspberry Pi:

We first import all the relevant libraries that run the neural network in the raspberry pi.

The raspberry pi has several GPIO (general purpose input/output) pins. In total the raspberry

pi has 26 GPIO pins, out of which we have used 24 GPIO pins:

• 19 output wires – used to send a 19-bit address requesting pixel data from the FPGA.

• raspReadyOutputPin – used to tell FPGA that it is ready with the output.

• samplingInputPin – pixel data sent from the FPGA at a particular memory address.

• restartInputPin – restart signal from FPGA telling raspberry pi to reset data.

• charDoneInputPin – signal from FPGA telling the raspberry pi that the character is

drawn and that it can now do its process to calculate the number.

• solveInputPin – signal from FPGA telling the raspberry pi that all the characters have

been entered and that it should calculate the equation.

In this function we create a 1D array recording all the pixel data coming from the

FPGA. There is a total of 640*480 = 307200 pixels on the canvas in which the person is

drawing. Therefore, we first initialize an array of that size with all 0s. We then request a

particular address from the FPGA using the output_to_fpga function and store the value into

the array coming from the samplingInputPin.

This function takes a number as an input, converts it into binary, reverses the order

(because of how the wires are mapped between the FPGA and the raspberry pi), and finally

sends each bit of the binary number to the FPGA through the wires.

This function takes the 1D array created by the record_data function and makes an image out

of it. It does this by first making the 1D array into 3D. Where the first dimension is height,

second dimension is the width, and the third dimension is the RGB values of that pixel. This

3D array is made into an image through python’s PIL library.

This function is responsible for two main things. Firstly, it turns the 640*480 image into an

array of 28*28 images each representing a character drawn on the canvas. It does this by

resize the image, and then recognize where an element ends by the process of segmentation.

Segmentation works by recognizing where all black pixels in a column change to white

pixels, and then chopping up the picture at the point where the character ends. Secondly, the

function sends each 28*28 image in the array through a neural network that recognizes what

element resides in each image. To see the entire process discussed in depth, please take a look

at the comments in the image above.

This function is responsible for taking the array of predicted elements and turning it into a

string equation. For instance, if the person wrote “1” and “2” on the canvas, then this function

will recognize it as “12”. Furthermore, it turns all the operators which were numbers into

symbols. Finally, it takes all of this information and then turns it into one comprehensive

equation. This function is only called when the person is done drawing the full equation and

wants to calculate the final answer. This means that theoretically, the person can draw as big

of an equation as required.

This is the main script that is run at the start of the while loop. Since there are multiple parts

to this, the code is divided into several parts and explained. Firstly, to indicate to the FPGA,

that the raspberry pi is booted and is ready to do its task, the FPGA sends 0 through the 19

wires to the FPGA and sets to output of the raspReadyOutputPin to 0. 0s through the 19 wires

act work like a flag that tells the FPGA to unfreeze the cursor and allow the person to draw.

Once this is done, an infinite while loop is run, that constantly checks if the FPGA is trying to

communicate with the raspberry pi. For instance, if the restart button has been clicked on the

FPGA, then the raspberry pi also clears all of its content.

When the user is done with typing the character, then this condition is entered. This is where

all the functions that take care of recording the data from the FPGA, creating its image,

recognizing the elements in the image, and creating a mathematical equation in the form of a

string is implemented. All of these functions have been discussed above. Once it has gotten

the string, it decides whether the element was a positive number, negative number, or an

operator. If it is an integer, then it turns it into a positive number and sets the 19th bit of

output to 1 implying that a negative number is being sent over. If it is positive, then it just

sends the output without setting the 19th bit to 1. Notice that the raspReadyOutputPin has

been set high, meaning that the raspberry pi just sent the output to the FPGA for it to display.

Once the answer has been sent, it sends all output pins to 0 again implying that the raspberry

pi is done and is now waiting for the FPGA to do its work again. There is a 1 second delay in

between to handle time synchronization issues that occurred due to the fact FPGA took a

while to clear its screen and be ready again. By doing this we successfully implemented our

custom protocol to communicate between the FPGA and the raspberry pi. It is also important

to note that the string recognized here is added to the overall mathematical equation.

Essentially, each time the person presses character done; the overall equation gets longer.

Lastly notice that there is a while loop inside the if statement. This while loop enforces the

program to pause until the turns button down asking the raspberry pi to do calculations.

When the person wants to solve the equation, it pushes the solve button which makes the

raspberry pi program come to this if statement. Inside here, the final answer is calculated

using the python’s eval function (which considers the order of operations). As discussed

above, negative answer is made positive and sent over the wires with the 19th bit set to 1.

Also notice that error handling has been implemented, meaning that if there is any error at

any point, then instead of killing the script, the user is notified that there is an error by

sending ‘7FFF’ to the FPGA. If there is ever an error, the user can simply restart the system

by pressing the restart button.

Now, I will discuss how the neural network is made. This function reads the dataset.csv file

which contains the raw data of 500,000 images of characters and operators. It then

standardizes the data and creates X and y arrays. X contains all the data of the images, and y

contains all the labels of those images. Once this is done, data is split into 90%-10% testing-

evaluation ratio. This means that the neural network is trained on the training set and tested

on the evaluation set.

This function creates the model using the X and y training sets. To be specific a 12-layer

convolutional neural network is created and trained using data. How good the model is

judged based on how accurate the model is. Once the model is made, it is saved as model.h5

file which is later accessed by the train_and_build function as explained above. The specifics

of what this code is doing can be understood by looking at the comments.

ModelSim:

 Due to the nature of our project, it was not feasible to run ModelSim to check all

480x640 bits of data. Checking 320,000 pixels was done by checksum function in lab 6.2.

Anyways we were able to replicate our VRAM to raspberry pi and hence did not require

modelsim.

Conclusion:

 We had lots of fun making the project. In this project we learnt about micro-

controllers such as Raspberry Pi and how to use GPIO pins. Though we tried to implement

SPI protocol, we were not very successful and instead implemented memory mapped I/O to

transfer data between the FPGA and Raspberry Pi. The AI script was auto run-on boot. It

would be appreciated if we could have more resources on SPI protocol.

Some Images:

